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SENSOR NOISE AND KALAN FILTER FOR AIDED

INERTIAL NAVIGATION SYSTEM

by

Gurmohan S. Grewal

ABSTRACT

Inertial Navigation System, barometric altimeter, TACAN, and ILS

are used to achieve a synergistic combination of the outputs of indi-

vidual subsystems. Kalman filter is used to provide an ideal method

for data processing in this multisensor navigation system. The filter

design begins with the development of mathematical and statistical

error models to describe the truth system. The truth model is sim-

plified and reduced, in steps, to lower the computation burden on the

on-board computer. The covariance analysis and the Monte Carlo methods
of testing the performance of the Kalman filters based on reduced and

simplified system models are discussed. Suggestions for further

research in the area of fault detection and isolation are offered.
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I. INTRODUCTION

Inertial Navigation Systems (INS) and non-inertial navigation aids

such as TACAN, ILS, Loran, OMEGA, navigation satellites, etc., have been

used in a number of multisensor-based navigation systems. Outputs of the

individual subsystems are combined synergistically. The software accom-

plishes this combination ideally utilizing the data from the subsystems to

yield much more accurate results than these subsystems can provide unaided.

Data processing algorithm, called Kalian filter, provides a systemic and

logical method of weighing various sources of information to produce a best

estimate of the quantities of interest.

This research is concerned with the development of a Kalman filter that

combines the data from a baro-inertial navigation with the range and bearing

measurements of a TACAN system during the cruise portion of the flight and

the measurements from an ILS system during the descent and the final approach

phase of a flight (Ref 1). The resulting filter provides the position and

the attitude of the aircraft.

The performance of a Kalman filter is dependent upon adequate mathemat-

ical and statistical models to describe the true system including system and

measurement dynamics, system disturbances and measurement errors, and initial

condition information. These models are formulated in the state space.

There are two approaches available for the state space formulation of the

models: the "total" state space models and the "error" state space models.

In the total state space formulation, position, velocity, and attitude are

among the state variables, and the measurements include accelerometer out-

puts and signals from TACAN or ILS. The resulting vehicle dynamics equations

are nonlinear, high frequency, and are not adequately developed for use in

the Kalman filter. In the error state space formulation, the errors in the

inertial navigation system position, velocity, and attitude values are among

the state variables, and measurements are composed of the differences between

the inertial and the external source data. The resultant vehicle dynamics

equations for the error state space formulation are low frequency, linear,

and fairly well developed for use in the Kalman filter (Ref 2, 3, 4).

Consequently, the error state space formulation, which is also called

"indirect" filter, is adopted. Further, the indirect filter can be Imple-

mented in two ways: feedforward and feedback. In the case of feedforward,



the output of the filter, which is the optimal estimates of the errors

between the inertial system outputs and the true values, Is subtracted from

the inertial system outputs to obtain the best available estimate of the

vehicle position, velocity, and attitude. The inertial system Is unaware of

the existence of the Kalman filter. The inertial system is free to drift

with unbounded errors. As these errors get large, the adopted model of the

inertial system becomes Invalid, resulting in filter "divergence." On thet. other hand, in the feedback configuration, the output of the filter, which

is the error between the true values and the inertial values, is fed back to

the inertial system to obtain a set of corrected inertial outputs. Thus the

inertial system errors are not allowed to grow unbounded. Moreover, the

filter need not propagate the estimates of the error state variables. Hence,

the feedback configuration is preferred.

If the comprehensive truth models are used in the development of Kalman

filter, the resulting filter will require extensive memory and computation

time, making it impractical for the limited on-board computer to handle the

problem. The computation load is approximately proportional to the third

power of the number of.states. required for modelling the system dynamics.

Therefore, simplified models, rather than the truth models, are used in the

filter development. The models simplification will result in performance

degradation. In order to m~ake intelligent approximations and assumptions

necessary to obtain workable models, it is important to thoroughly understand

the laws governing the involved system. Resulting performance degradation

can be analyzed using covariance analysis and the Monte Carlo methods. The

Air Force has fully developed, unclassified, transportable software packages

for vehicle trajectory generation (Ref 5), covariance analysis (Ref 6),

Monte Carlo analysis (Ref 7), and for plotting the results of Monte Carlo

analysis (Ref 8), specifically to aid the testing and evaluation of the

Kalman filter.

II. OBJECTIVES

The effort involved for this Summer Faculty Program had two main objectives:

L (1) To provide an option for the injection of random errors into the out-

puts of the INS, TACAN, and air data sensor models of the Digital

Avionics Information System (DAIS). Eacb of these random error sources

is to be capable of interruption by the setting of an appropriate flag

bit in a control word.



(2) After a detailed study of the available comprehensive TACAN/ILS-

aided baro-inertial navigation system models (Ref 2, 3, 4, 9),

develop reduced states simplified models in order to obtain a work-

able Kalman filter. The simplifications and the reductions are to

be implemented in steps in order that the Kalman filter resulting

from each approximation can be tested for the performance sensitiv-

ity to that particular approximation. There will not be enough

time to complete the performance analysis, but the strategy for the

step-by-step models simplification is to be well established by the

end of this ten-week summer period.

III. RNDOM ERRORS INJECTION INTO DAIS SENSOR MODELS

In order to simulate various error conditions, a control word is

defined with the following bit assignments:

Control Word Bit Assignments

Error Bit No Default
Model Signal 1--ON, O=OF Value

INS Actual Latitude 1 1
1 Lat. Error 2 0
5 Lat. Error 3 0
Actual Longitude 4 1
1 Long. Error 5 0
5 Long. Error 6 0

TACAN Actual Range 7 1
1. Range Error 8 0
5 Range Error 9 0
Actual Bearing 10 1
1 Bearing Error 11 0
5 Bearing Error 12 0

Air Data Actual TAS 13 1
1 TAS Error 14 0
5 TAS Error 15 0
Not Used 16 0



The DEC-10 FORTRAN statement for the control word is inserted in the

SCEN subroutine of DAIS:

IRRR "0XXXXX"IMO
INS Latitude Error
INS Longitude Error
IN Longte Error
TACAN Range ErrorTACAN Bearing Error i

Air Data Error

Default value IERROR "011111"

1 , NO Noise
Octal Digit Values 2 , 1 Noise

4 , 5 Noise

The control word is set by the operator at the beginning of the simulation

run.

3.1 Random Noise Model

A normally distributed random variable N of zero mean and unit

variance is obtained from two independent samples U1 and U2 of uniform

distribution between zero and one by the following equation:

A second normally distributed is obtained from the above equation by

changing the SIN to COS:

The time correlation is introduced as follows:

where

n - nth iteration
t = iteration interval

= correlation time



The error en of mean M and standard deviation is obtained by the fol-

lowing equation:

Since this random noise is used repeatedly, a subroutine called

RNOISE is generated for it. FORTRAN coding for this subroutine is as

follows:

SUBROUTINE RNOISE(XIAST ,DELT,TAU, SIGMA,ERR,XCUR)

DOUBLE PRECISION XX,X2,RHO,ERR,XCURXLAST,PI2

IF(X2.EQ.0.) GO TO 5

X=X2

X2=0.

GO TO 10

5 CALL RDN(Ul)

CALL RDN(U2)

P12=6.28318530717958648D0

XI=DSQRT(-2.DO*ALOG(Ul))*DCOS(PI2*U2)

X2=DSQRT(-2 .DO*ALOG(Ul)) *DSIN(PI2*U2)

X=Xl

10 RHO=DEXP (-DELT/TAU)

XCUER=RHO*XLAST+DSQRT (I-RHO**2) *X

ERR-SIGMA*XCUR

RETURN

END

The variable X2 needs to be zeroed at the beginning of the simulation.

3.2 INS Error Model

The INS error model introduces errors into the horizontal naviga-

tion channels. These errors have the following parameters:

Velocity Error Standard Deviation - 0.707 n.m./hr. per axis

Velocity Error Mean Error - 0 per axis

Velocity Error Correlation Time - 30 min. per axis

_.



Since the INS model does not integrate velocity, the velocity error is

integrated to form position errors to be added to INS position outputs.

First, two velocity errors Vn and VE are derived. These velocity

errors are integrated to obtain the latitude error and the longitude

error

where R. is the radius of the earth. Then the noise-corrupted direction

cosines, longitude, and velocity outputs are:

C-bay cost)Ct'-
C.P C4 1

Vb- V0~V
where is the wander angle. The following codes are inserted at the

end of INSIN and INSNAV, respectively:

Code To Be Inserted In INUIN Subroutine

DOUBLE PRECISION XLINVE,XLINVN,DLINVE,DLINVN,PI2

P12=6.28318530717958648D0

CALL RDN(Ul)

CALL RDN(U2)

XLINVE=DSQRT(-2.DO*ALOG(Ul) )*COS(PI2*U2)

XLINVN=DSQRT(-2 .DO*ALOG(Ul))*SIN(PI2*U2)

DELLAT=O.

DELLNG=0.

SDINVE=(SQRT(2.)/2.)/(3600.*FPSKTS)

TAUINV=1800.

SDINVN=SDINVE

IF((IERROR.AND ."000007) .EQ."000001) SDINVN=O.

IF((IERROR.AND."000007).EQ."000004) SDINVN=5*SDINVN

IF((IERROR.AND."000070).EQ."000010) SDINVE=O

IF((IERROR.AND."000070) .EQ."000040) SDINVE=5*SDINVE



Code To Be Inserted In INUNAV Subroutine

DOUBLE PRECISION XCINVE ,XCINVN

IF( (IERROR.AND."000077) .EQ."OOO0ll) GO TO 100

CALL RNOISE(XLINVE ,DTINUS ,TAUINV,SDINVE ,DLINVN ,XCINVN)

CALL RNOISE (XLINN,DTINJS ,TAUT.NV ,SDINV,DLINVE ,XCINVE)

XLINVEXCIMV

XLIIMVNXCINVN

VELEPS-VELEFS+DLI NVE

VELNPFS-VELNFS-+DLIMV

DELLAT-DELLAT+(DLINVN/EARADF) *DTINTJS

DELLNG-DELLNG+(DLINVE/ (EARADF*COS (ANLATR) ) ) *D3 rpS
FLNGOR-FLNGOR+DELLNG

CXXDIR-CXXDIR-COS (WANDER) *SIN(ANTATR) *DELUAT

CXYDIR-CCXYDIR+SIN (WANDER) *SIN(ANLATR) *DELLAT

CXZDIR-CXZDIR4COS (ANLATR) *DELLAT

100 CONTINUE

3.3 TACAI Error Model

Random, time-correlated errors, having the following characteristics,

are added to the TACAN range and bearing measurements:

Range Bias Error Standard Deviation = 2000 ft.

Bearing Bias Error Standard Deviation =2 deg.

Range and Bearing Correlation Time -5 sec.

Range and Bearing Mean Error =0

The following code is inserted into the TACAN and CHNTAC subroutines of

DAIS.

Code To Be Inserted Into TACAN Subroutine

DOUBLE PRECISION XLTACR,XLTACB,PI2

CALL RDN(Ul)

CALL RDN(U2)

XU.TACR=DSQRT(-2 .DO*ALOG (Ul) )*DCOS (PI2*U2)

XLTACB-DSQRT(-2 .DO*ALOG(U1) )*DSIN(PI2*U2)



-.

SDTACR=2000.

r SDTACB=2./DEGPRR

TAUTA.=5.

IF((IERROR.AND."000700) .EQ."000l00) SDTACR=0 .

IF((IERROR.AND."000700).EQ."000400) SDTACR=5.*SDTACR

IF((IERROR.AND."007000).EQ."001000) SDTACB=O.

IF((IERROR.AND."007000).EQ."004000) SDTACB=5.*SDTACB

DTTACS=DELTIM*(8./ITRATE(MODELN))

Code To Be Inserted Into CHNTAC Subroutine

DOUBLE PRECISION XCTACR,XCTACB

IF((IERROR.AND."007700).EQ."001100) GO TO 100

CALL RNOISE (XLTACR,DTTACS,TAUTAC,SDTACR,DLTACR,XCTACR)

CALL RNOISE (XLTACB,DTTACS,TAtITAC,SDTACB,DLTACB,XCTACB)

XLTACR=XCTACR

XLTACB=XCTACB

CRANGF=CRANGF+DLTACR

CAZMTR=CAZMTR+DLTACB

100 CONTINUE

3.4 Air Data Error Model

In order to corrupt true air speed (TAS) without disturbing the

calculation of altitude, the temperature output from the air data sensor

model is perturbed. The sensitivity of the TAS to changes in the

temperature is related as follows:

where TR is the temperature in deg.R. A percentage error in the TAS of

k%, 1 , is:

where R is a random, time-correlated variable with the following parameters:

Percentage Error in TAS 3%, 1

Correlation Time 3 min.
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The following code is inserted in the ADCIN and ADC subroutines to

achieve the required temperature corruption.

To Be Inserted In ADCIN Subroutine

DOUBLE PRECISION XLADCT

CALL WD (Ul)

CALL RDN(U2)

XLADCT=DSQRT (-2. DO*ALOG (Ul)) *COS (PI2*U2)

SDADCT=3.

TAUADC=180.

IF( (IERROR.ANhD."070000) .EQ."010000) SDADCT=O.

IF((IERROR.AND."070000) .EQ."040000) SDADCT=5 .*SDADCT

DTADCS=DELTIM*(64 ./ITRATE(MOD LN))

To Be Inserted Into ADC Subroutine

DOUBLE PRECISION XCADCT

IF((IERROR.AND."070000) .EQ."010000) GO TO 100

CALL RNOISE (XLADCT ,DTADCT,TAUADC, SDADCTDLADCT,XCADCT)

XLADCT=XCADCT

TMALTR=TMALTR*(I.+2 .*DLADCT/100.)

100 CONTINUE

IV. THE FUNDAMENTAL STRUCTURE OF KALMAN FILTER

The syptem state is described by: L

(K- 4
and the measurements are described by

where,

X(k) n-by-i state vector at time tk

U(k) = r-by-i deterministic input vector

W(k) -s-by-i driving noise vector

Z_(k) - m-by-i measurement vector



V(k) - m-by-i measurement noise vector

$ (k+l,k) = n-by-n state transition matrix

_B(k) = n-by-r deterministic input matrix

G(k) - n-by-s noise input matrix

1_(k) = m-by-n measurement matrix

and, W(k) and V(k) are zero mean white noise sequences with known

covariance:

K L<KL3 -

The Kalman filter updates the state estimate X(k) and error covariance

P(k) at the measurement time tk by:

From one measurement to the next, the state and error covarianee are

extrapolated as follows:

where K(k) is the Kalman filter gain and Y(k) is the innovation process,

k)

YIk-



and

The above recursive relations are initiated by apriori knowledge of

the state and the error covariance at time Thus,

V. FULL-SCALE STATE SPACE ERROR MODELS

The comprehensive error models, which are the departing point of

the models simplifications, are presented in this section (Ref 1).

5.1 Inertial System Error Model

With the latitude-longitude mechanization (x: level east,. y: level

north, z: up) of the platform orientation, the full-scale inertial

system errors model is developed in terms of the following state variables:

(1) Position Sk , R,)defined as the computed values
minus the true values,

(2) Velocity errors Vj,9,)defined similarly,

(3) MisalIgnment angles defined as angles from the computer

axis to the platform axes,

(4) Accelerometer errors (4, 4S I aL.)

(5) Platform drift errors

Because of the limited cross-feed between the vertical loop and the

level loop and due to the fact that the vertical loop needs to be

stabilized by the barometer altimeter measurement of the altitude, the

vertical and the level loops are decoupled.



5.1.1 Inertial System Level Loop State Equations

(jy4~~~) - EVe.

fu = O FI/ -- C, G .

QW

R = radius of the earth

L = latitude
o= Schuler frequency

Wie earth rotation rate

a i  = accelerometer outputs, i-e, n, u

wi  = gyro outputs, i=e, n, u

T = correlation times

white zero-mean Gaussian noises

= errors in the gravity vector, i=e, n

5.1.2 Baro-Inertial Vertical Loop State Equations

The vertical state equations are:

C Fx ItLL)k



where
_.i

The Ci values are selected to obtain a desired vertical loop time constant.

5.2.1 Measurement Error Model For TkCAN (Ref 1)

The bearing and the range error measurements are:

-- :) " - A ) R -6- R M P

where

A-

The TACN measurement biases b and b are represented as state variables,

hIb



5.2.2 Measurement Error Model For ILS (Ref 1)

The localizer measurement ^A and the glidescope measurement S are

modelled as follows:

- '

where V ( V are zero mean white noise, and are zero mean

exponentially correlated variables which will produce two extra state

variables. The measurement errors to be used are:

where

5.3 Simplified Models (Ref .1).

A Kalman filter based on the comprehensive models of the previous

section is impractical because of the excessive computation burden on

Lq

the on-board computer. In order to develop a workable Kalman filter,-

the underlying models must be simplified. These simplifications will

result in the filter performance degradation. Some of these simplifi-

cations may result in an unacceptable loss in the performance of the

resultant filter. Thus, it is essential that the performance sensitivity i
to each simplification be evaluated. The rest of this section outlines

some of the feasible siipplifications.

reuti h itrpromnedgaain oeo hs ipii

caiosmyrslinauncetbelsintepromneoth



5.3.1 Simplified Inertial Level Loop

The step-by-step simplifications are performed in the following --

order:

Step 1 All the terms in the comprehensive state equations which are

of the order of magnitude of Vie are ignored, resulting in

removal of the weak coupling between the states. The result

will not be the reduction of the number of states, but will

make the state transition matrix sparse.

Step 2 Model the accelerometer output uncertainties by a white noise

of appropriate power. This will result in reducing the number

of states by two.

Step 3 The three states modelling the gyro drift rates are removed by

replacing the gyro drift by a white noise of appropriate intensity.

After the above three-step simplification, the state equations

become:

tSV e -c.4's' -f --- 'i V&, -~ -t

5.3.2 Simplified Vertical Loop

Although the undamnped vertical loop is unstable for the short

period during approach and landing, the Kalman filter can be developed

using the undamped vertical loop dynamics.

where tis a white noise representing the term 6L ~q.+~.~

5.3.3 Simplified TACANI Model

The state due to the TACAN range bias is removed.
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